STE Platform

STE Platform & SHADE Plugin API
by SHADE SANDBOX LLC

STE Platform

Table of contents

OVEIVIBW ..ttt ettt ettt e e ettt e s st e e e s et e e s e ase et e e e me et e e e s e et e s aanee e e e s an e et e e eanneeeesanneeeesannneeesnrneeesannneeens 6
1TSS VA =T T/ Lo o1 o PRSP 7
=T =41 (VA Y/ o T 1) o PP PPPPPPPPPPPRPPPRE 7
PrOCESS IMIONITON ...viiiiiiiiiiiitie e e e e s be e s nb e e e s s 7
(G0 T =] o = 1o O T PSPPSR PRRTOURPUPPOR 7

STIUCTUIES .ttt e e et et e e e s e e et e e e e s s s bbb et e e e e e s s s b e beeeeeessesannraneees 9
EVENT_NOTIFICATION ...ceeiiiiititiittiitttttttttteteteteteteteteteteteteteaeteeeteae e et e e ettt et e et eeaeae e e e e e eeeesesesesesasesenenenenenenennnens 9

(1o g oo o =1 o | 10
LT = 1 o 10
U] o o] o 1T =1 To] o USRI 11
AV 1 Y/ < TP 11
OFigINAIDESITEUACCESS ... vteee ittt eettee e ettt ettt e e s e e e sttt e e e sebe e e e esabeeeeeaabeeeeesabeeeesaasaeeeessseeesannsreesannsees 11
ISNGMEVANI. ¢t b e bt sttt et e bt e s bt e sbe e sat e st e et e e b e e beennees 11
9] Tc DT OSSP PP TP UTUTOPPTO 11
[T 1 =1 014 =T FS SRR 12
Lo g T={ o T 1A T g4 o4 To PRSP 12
(S 1 T={8 o =T o1 PPN 12
WSFIIEINGMIE .t sttt et e b e st e san e sab e e bt e reesmeesmeesaneenneens 12
WSREEKEYNAME ..o, 12
WSOIANGMIE ..ttt et b e b e e s bt e sat e eat e e be e beesbeesaeesabesabeeabee bt enbeesreeenteeteens 12
SZONIIANGME ...ttt e b e s bt e s at e s bt s bt e b e e bt e ebe e saeesat e eabeeabeenbeeeheesareeane 12
WSFOUNAFITENGME ...ttt et st b e reesmeesseeeneeneens 12
WSV AIKEYINGIME .. eiii ittt e e e e et e e e e s bt e e e e sbteeeeebeeeeeenstaeessstaeeesstaeessssaeassnssneassnns 12
WSINEWNGIME Lttt b e e e st b e e e s s b s e e s sbbs e e e sans 12
(ol o111 | =4 T OO OO ST OUPRUP TR PP 12
usMandatoryObjectNamMESIZEINBYLEScccccuviiieiiiieeeceee ettt e e e e rae e e et e e e eareee e enees 12
UsOPtionalObjeCtNAMESIZEINBYLESuueiiiiiiieciiieeee et e et r e e e e e e e err e e e e e e e e e ssnnsraeeeeeeesennnnes 13
TREPLY ettt ettt sttt s h e st sttt e bt e h e s a e s et et e b e e e Re e eh et e e e e bt e e b e e s he e sane e b e e r e e reennees 13
ATTOW() wereieriiee ettt ettt eete e e e bt e e e e e ba e e e e e bt e e e e ebeaeeesbbaee e e baaee e e baaee e s baaeee s baaeeeebbaeeesarraeeeenns 13
2 U=To [Tt i F TR TRRSRRRRRP 13
WSFIIENGIME ..ttt ettt e s b e e s ar e e st e e s be e e sabeesaneeesnseesareeesnreesanes 13
SEEFIIEINGIME() ureieeiiiie ettt ettt e et e e e e et e e e e ebe e e e eebeeeeeeabaeeeeaabaeeeeaabeeeeeantaeeeenstaeeeeanseeasennsens 13
GEEFIIEINGIME() vvveeieereieieeieie ettt ettt ettt e et e e e eebe e e e eebeeeeeeabaeeeeeabeeeeeesbeeesenstaeeseasteresensreeesennsees 13

STE Platform

GETFIENGIMESIZE() cuvvrreeieeeeiieiiree ettt eeeeeeb e e e e et e eeabaaereeeeeeessabaaereeeeeeaasssbaaseeseeesannssreesreseeenn 13
FRUIE ettt s bt s at e et et e bt e s bt e s at e s a bt e a bt e b e b e e e he e e he e e et e be e nhe e s Reeeare e b e e be e beennees 14
Y8 T T =T N U] =T PR 14

T Y =T =T o L=T U =T PSS 14
REMOVEONPIOCESSDEATN() .o.uveiieiieciie ettt ettt et e et e e s te e s ba e e sab e e ebaeenreesneeesnseens 15

N o 41 Y/ ISR 15

1= = ST 15
o Tol Ty o) USSP PRPURRRRRRRt 15

e TUT =410 T RS PRS 15

LCYY O Lo 1o TE =T [Te | S 15

Y {0 o =Totd =T oo =T § USSR 15

(C1 (0] o Yot =T LT 72T USSR 16
(G110 o T =Totd 1= o =T § ISP 16

{01 =Y Nt oY o SRS PRR 16

(0o TaY Yo YT o | IS 16

(0] 01T 4T o SR 16

Y] oT@ T T=T =1 4 o o1 RS 16
IPFOCESSDATA. ..ttt e s e e s 16
L] o o)4 PPN 17
Y el o VA=Y (e Yo =Te I (V] oot 4 o] o -SSR 17
FSPROXY_APTISELUP™ INIL() c.veeurererrieierieetenest ettt sttt ettt st st nbe et 17
[NY=1 AU o I PP PP PP PP PPPPPPPPPPPPPPPPRt 17
SEtSIMPIFIEdCAlIDACKS() .vveeeieriee ettt ee e et e e e e aba e e e e e be e e e e enbaee e e nnes 18

B ToY 11 7=T T o T=0) SRR 18
LT T o= = | LU L (R 18
TREEAASNUMBEI() 1eeeeieieieeieiiii ettt ettt ettt eetr e et e e e estaaeeeeeabeeeeeasbaeeesestseeesentsseeeantbeeesannreeens 18

g o1 T=To [0 | o F- Yol PR 19
GENEIICCAIIDACK() covvvreiiereie ettt e e e bee e e e ebee e e eeabe e e e eeabeeeeeeabaeeeeeabeeeeennbeeeeennrens 19

LR 1 TSIS A =T 0 0 YT YA o] SRR 20
OVEIVIBW .ttt e e e et e e et e e s e e e e e a s et e e s n s e e e e s s s e e e e s mn e ee e s s ee e e s s reee s e nrenesenrenessannes 20
COMMICATION LAYEE ettt s 20
L0 L) = Y U ot (U < PP PPPPRPPPTI 20
A= Y= ST PR 21
AWCOMMANG .ttt e e st e e bt e e s e e s bt e e s be e s beeeaneeesabeeesmbeesaneeeaneeesareeesnneesanes 21

STE Platform

AWETTOTCOUE ...ttt ettt e b e s bt e sat e st st e b e bt e s beesaeesaeeeateebeenbeesbeesanesane 21

(@1 (VT4 oY D | - USRS 21
CIMUILICONNECESESSION ..einiiieiiie ettt ettt et e ettt ste e s bt e e sab e s bt e e sateesbeeesabeesbeeesaseesaneeesareesanes 21

8L =Yg\ [T - T PP P PP PP PPPPPPPPPPPPPPPRt 21
[t o i (=T I U1 o Yord o T o L3P 22
oo g =To I oY =T n =D RSP 22
LY =T o o 1T O P PO PP T OPPRROP 22
LY [o] { @eT 0 o T=To1 (o]] | ISR 22

[] o T 1 g T0eY Vg Y=Tot o o | SRS 23
RECVIMIESSAZE() +veevreerreeeitieeiiie ettt e st eestte e sttt e e steeesateesbeeessbeesaseeasseasaseeesseeassaeasseesnsaeensasesntaessseennsenns 23

YT Te [\ FoT =Y = T USSR 23

(@ Fo 3= @oT] o =Tot o] o SRS 23

L LT = T o T V] =T PR 24
OVEIVIBW ittt ettt ettt e ettt e e sttt e e ettt e e e s bt e e e e s b et e e e abe e e e e anbe e e e e nsb e e e s nnbeee s nsbeeesannbeeesannbeeesennranesannnes 24
0T I =T g o=] [V 4o TP 24
SEruCtUres USEd DY PIUZINS c...eveeei e e e e e e et e e e st ee e e e s ree e e esabaeeeennrees 24
L (U T=T (O 1= Yol &SRR 24
TaT LA =] 2= T 25

LT 0]\ [a1y iTor=1u oY oY | SRS 25

T aF=Y 721 § PR SO RSP RRRRRP 25

LCTY{ IUT={T01 o] o] | ISR 25

(1 fe 1ol eI Y T - =T PP P PP PP PP PP PPPPPPPPPPPPPPPRt 25
LGy o Tol =T @10 o ISR 25

(T o Tol =T D - | P SRS 25
TPIrOCESSDATA .ttt e s e e s s 26

Oy o Tol=T Y 1Y o T [ISR 26
AAPIOCESS() veeeuvveeeiireieeieteee ettt e eettre e e eeette e e eeetaeeeeeetaeeeeeetbeeeeeessaeeeeetbeeeesatsaeeesasseeeesatseeessassaeessnsreeeesnes 26
REMOVEPIOCESS () vvveiiierrieiiitiiie ettt cete e ettt e e e ettre e e e et e e e setaeeeesesbaesesasbaesesasaaesesassaeeeeassaesesasbaneesansrnnens 26

L RRE] L1\ - T T Y= T USSR 26

[F=To | U] 1=T | RTINS 27
SEITAIIZERUIES() veveiieereiei ettt e e e ebee e e e et e e e eeabeeeeeeabeeeeeeabeeeesenbaeeesesbeeeesssreeesennnees 27
GELRUIESNAPSNOL() c.vvieeieieeiee ettt ettt et e et e s e e e ba e e s be e e baeesabeesabaeesabeeesaeesasaesnsseesareeenses 27
GEERUIE() wvveeeiereee ittt ettt e e et e e e e et e e e eeabae e e eeabaeeeeeabeeeseesbeeeeenstaeeeeasteeeseanseeeeennsees 27
=T g =T 0] g Lo Yo (O URTRUPR 27

STE Platform

e d I T oy A Tor= Y [o IR 27
0Ly Yoy e 1 =T N o] ay {ToF 14 [o Y oY | PSR 27
ATARUIE() et e e eee e et ee s e e see e e e s e e e see s s e e eeeeeeseeeeeeeeeeesaeseeeessessesseeseeeeans 27
1] =] 2 =T S PS 27
(0] a7 Yot d 11 4 e} o () ISR 28
(@131 DI Tot 1V= 4 (o] 11) ISP 28

L Eo YA 1] 0 4 Y= Vi ol SRR 28
(0] RT=T A VA Tol=] § F RSP PRRT 28
GELPIUGINBYGUID() .o ee e e eee e eeeseeesee s s e s seee s eeeeseeeeeseeseseeee s s ssesseesesseeeessseneeae 28
UL a1 T=To | TUT=4 o TR RS PSS 28

1 =] oY 2 e Yol | TP 29
g I T N e TN =T ol] (o Y | R 29
UNregisterAPIHINTEICEPTON() uvrreieiiieeeeiiiee ettt ectt e e e et e e e tr e e e et e e e ettaeeeeasaeeeensaeeeeansseeesansaneenn 29
(1Y o111} =T g ol=T o Jo] ST PSPPSR PPPP PP 29
o T cT Y = (U] o PSS 29
L T =dT oI =V oY wu=Te =T a1 d VA e To 1o | ARSI 30
SHADE PIUZIN APL OVEIVIEBW ...vveieiiiiee ettt e eettee e eette e e e tte e e e etee e e eeataeeeeebeeeseeabaeeeeantaeeeeassaeeesanseseesanseneeennsens 30
IVIFEURIMACKING ...t ettt et s at e s ae e et e e bt e s beesbeesatesabeebeebeenneas 30
IVirtualMaching MEthOds. ..ottt st st b e sbe e 31
LA L= PSPPSR OPOPPOPRRPSRPRTIN 31
AAAEXECULADIE ...t sttt et et sae e st sr e e bt e b e re e e saneereens 31
FYe [o o ISPV ROPROPRTRPRN 32
REMOVEEXECULADIE ... ettt b ettt et bt e bt e s beesateeneeeneeenbeens 32
ISFIESANADOXEM. ...ttt ettt e b e s bt e sat e st e st e be e be e s bt e sbeeeateenteenteenreens 32
ISPrOCESSSANADOXEM ... ittt ettt sttt sttt b e be e be e st eaeeeteenreen 32
GEEGUID ..ttt st ettt b e s ae e sttt b bt e b e sae e s e et en e e reesane s ane e 32
LG @ =TT oY - - PSSR PR 32
YO =TT T - -SSR PSPR 32
SEIIANIZE ..ot b e e e e s be e e s bt e s Re e e aneee s reeesareeeanes 32
GetSANADOXEAFIIESLIST ...ceiueieiiie ittt et e s e e s e s ne e e sar e e sne e e sareeeanes 32
FrEELIST .oiiiiiiiiiiti e 33

[0 - o TSPV PSSO PTOPPRPRRRTRRPRVIN 33
GEEFSROOT.....cuiiiiiiiiiii it 33
ASSIBNVIBW .o 33

STE Platform

I @ =TT oY (g =401« TR 33
SEENGIME ..t e 33
LCT =] 1 = TP PPPPP 33
T oY= o] g B I=] 1=Y o o USRI 33
¥ o 1= PPN 33
RIBASE .ttt sttt et e b e bt e s bt e eh e sa bt s bt e b e e b e e bt e beeene e et e enreenreen 33
A Y LY T - =T PP PPPPPPPPRRE 34
IVirtualMaching MeEthOds. ..ottt s ennees 34
CrEatEVIM ..o e et e e e r e e e e 34
DEIELEVIM ..ttt ettt ettt e e a e s bt e s a bt e s bt e e bt e e s bt e e bt e e eabe e s beeesabeesbeeeanteesbeeesareens 34
GEEVIM ettt b e bttt ettt e bt e s bt e sa ettt e bt e bt e be e e be e eheeeat e et e e be e nheesheesaneeane 34
GEEVIMIS ettt b e bttt et et e e bt e e bt e sa et e a bt et e e b e e be e abe e ehe e eat e et e e beenheesaeesaneeane 34
VIMICOUNT <.ttt ettt ettt et e s st e e s s et e e s sbe et e s sbae e e s sbeeeessnaeeessnneeessans 35
SEIBCEVIM L.ttt ettt ettt b et e s bt e e hb e e s a bt e s bt e e s bt e e bt e e ea bt e s beeesabeesbeeeanbeeeabeeesabeeeares 35
GESEIECLEAVM ..t ettt sttt et e s bt e e st e e bt e e sabeesabeeesabeeebbeeaaseesabeeesabeeeanes 35
ProcessOrPhanageAFilEsciiiuiiii i e e e et e e s sata e e e e sabae e e esntaeeeesnaeee s 35
GV IMIBYIN M. .. e e e e s e s s nnnnn 35
L8 T o [L= 1= T2 L= PPPPPPPPRE 35
IVIEWECAIIDACKS ...ttt b e s at e s at e et e e be e s be e sae e st e et e e b e e nbeenneas 35
IViewCallabacks MEthOdS.....c...ooiiiiiie ettt 36
SBUIAAAFIIETOUL ..ttt ettt st sttt b e st et sn e sneesenesane e 36
SBUI_REMOVEFIEFIOMUI ..ciiieiiiei ettt sttt e e e e stre e e sabae e s e bae e e eabaeeeesabaaeeennees 36
ClIRANVIBW ettt b e ht e et e bt e e bt e s bt e sate e abe e a bt e be e bt e abeesheesateeateebeenbeesheesareeane 36
[0 To g =T N ¥ ot o] o RSP 36
Overview

STE Platform (Security Toolkit Engine) platform by SHADE Sandbox LLC is aimed
to simplify development of security-related software such as virtual environments
(featherweight sandboxes) ,system monitors , antiviral software or file
management software. The platform consists of a kernel mode driver , a proxy dll
and a user mode service. The service is able to load plugins which are to
implement desired business logic. STE is functionally divided into following
components:

STE Platform

File System Monitor

This component intercepts the following file system operations : CREATE/OPEN of
a file , LOADing and UNLOADing of executable modules , DELETion of files and
directories, CLOSing of files, and enumerating of directories contents. FSSDK user
is able to monitor , allow or deny all of mentioned operations. It is also possible
to redirect OPEN/CREATE request to any subdirectory or registry branch.
Redirection is, however, quite complex operation, and includes not only
redirection of an operation but some additional actions which are required to
implement a sandbox functionality that was kept in mind during the platform
development. To support most functionality of a sandbox, a developer only has
to create a group of rules for the platform in their sandbox platform. Cybergenic
Shade is a great example of a sandbox that sits back on this platform. In order to
protect the product against detection by malware or a malicious employee (in
case, an enterprise product is to be built on the back of this platform), it is also
possible to hide any number of files)/directories in the file system.

Registry Monitor

This component intercepts almost all registry related operations such as opening,
creating and deleting a key or value. It is also possible to redirect registry
operations to a given subkey, thus, implementing a «registry part» of a sandbox in
a similar to a file system monitor way.

Process Monitor

This component monitors creation and termination of processes in the system. It
is possible to monitor loading and unloading of processes, however, there is no
way to prevent a process from loading using this component. User should use File
System Monitor for preventing modules from being loaded.

GUI Interface

This component is to be linked to plugins and provides an unified interface for
communication with GUI engine, which is supposed to support STE GUI
communication protocol. The GUI engine is required to support the interface to
be compatible with plugins. It is possible to have several different GUI engines for
the final product . The platform communicates with GUI using COMLAYER, an
interface based on named pipes or sockets. The interaction is based on
sending/receiving messages of CData structure. The only requirement the
platform requires GUI engine to meet is to use COMLAYER interface for

7

STE Platform

communication and, yet, the GUI engine should provide interface.lib (or similar
file) that plugins can link to on the server side. The details of communication are
up to particular implementation of GUI engine. If you don’t need the whole
platform functionality, but only want to use sandboxing features, please refer to
SHADE API.

STE Platform

Structures

This section describes structures used by Platform.

EVENT _NOTIFICATION
EVENT_NOTIFICATION structure documentation is preliminary and may change in the future ! Please
look at attached header file for accurate structure definition and see comments on its fields in that file.

This structure is used to inform user about all events in the file system , registry or
process manager and is defined as follows:

class EVENT_NOTIFICATION

{
public:
unsigned long bNonPagedPoolAllocated; // user-mode code must ignore this flag
unsigned long iComponent;
unsigned long Operation; // OPERATION : CREATE , ERASE , FIND_FILE
unsigned long suboperation; // WRITE, RO
unsigned long ValType; // type of value for registry or TRUE if isDirectory
ACCESS_MASK OriginalDesiredAccess;
unsigned long isNameValid; // TRUE if wsFileName contains name. FALSE if file opened
by ID.
union
{

HANDLE pid; // PROCESS ID

HANDLE parentPid; // parent process ID on process create notification
HANDLE originatingPid; // PID that has initiated thread creation
unsigned __int64 x64allignment0; //x64 compatibility issue

unsigned long datalen; // size of data in Data
unsigned long actuallen; // actual length of registry data (can be greater than data
unsigned long usMandatoryObjectNameSizelnBytes; // includes zero terminator
union
{
WCHAR* wsFileName; // File or directory name operation is performed on
WCHAR* wsRegKeyName; // RegKey name operation is performed on
WCHAR* wsOldName; // for rename op
WCHAR¥* szChildName; // child process name
2
unsigned long usOptionalObjectNameSizelnBytes; // includes zero terminator
union
{
WCHAR* wsFoundFileName; // currently found file name for QUERY_DIRECTORY requests
WCHAR* wsValKeyName; // value of registry key inside the key
WCHAR* wsNewName;

|5

STE Platform

HANDLE childPid; // child process Id
union

{
unsigned char Data[MAX_DATA]J;

unsigned long PostStatus;

BOOLEAN bReplacelfExists; // for rename

IMAGE_LOAD_DATA imagelLoadData; // for LOAD_IMAGE notification only
2
GUID user_mode_rule;

|5

iComponent

Defines FSSDK component that has issued an event:
COM _FILE — Originating component is a File System.
COM_REGISTRY — Originating component is a Registry.

COM_PROCESS_NOTIFY — Originating component is Process Manager.

Operation
Defines an operation that is currently being performed by a process. The

operation is component specific and can take the follwing values:
For File System component:

CREATE - The file is being created or opened.

CLOSE - Thefile is being closed, i.e. last opened handle is closed.

ERASE - The file is being deleted.

FIND_FILE — The directory is being enumerated.

QUERY_DIRECTORY — Same as previous, but this is a post-operation event.
RENAME — The file is being renamed.

LOAD - An executable module is being loaded, such as process or DLL module.
UNLOAD — An executable module is being unloaded.

For Registry component:

ROP_NtDeleteKey — The key is being deleted.
ROP_NtDeleteValueKey — The key value is being deleted.
ROP_NtCreateKeyEx — The key is being created or opened.
ROP_NtOpenKeyEx — The key is being opened.
ROP_NtRenameKey — The key is being renamed.
ROP_NtSetValueKey — The key value is being set.

10

STE Platform

ROP_NtCloseHandle — The key handle is bei_ng closed.
ROP_NtGeneric — Other registry operations.

For Process Manager component:
LOAD - A process is being loaded, such as process or DLL module.
UNLOAD — A process is being unloaded.

Suboperation
Defines suboperation that is currently being performed by a process and is

component specific:
For File System component:

RO - defined for CREATE request and specifies that file is being opened for read
only access.

WRITE - defined for CREATE/ERASE request and specifies that file is being opened
for write access.

For Registry component:
REG_PRE — the operation is pre-operation.
REG_POST - the operation is post-operation.

For Process manager component this field is undefined.

ValType
Type of registry value such as REG_SZ. See Windows Driver Kit for complete list of

possible values.

OriginalDesiredAccess
Desired access for a file operation. See ACCESS_MASK description for details.

isNameValid
Defines if a File System Component operation is being performed on a file that

was opened by name.

pid
Process ID that performs this operation.

11

STE Platform

parentPid
Parent process of one that performs this operation. Defined only for Process

Mangager component.

originatingPid
Currently unused.

x64allignment0
Currently unused.

wsFileName

File name in native format that the current operation is being performed on. For
example, it contains file name being created for CREATE operation.

wsRegKeyName
Registry key name in native format the the current operation is being performed
on.

wsOldName
Used for rename operation. An old name in native format of an object being

renamed. Currently defined only for Registry component.

szChildName
Defined for process manger. The name of a child process for LOAD operation. It is

not recommended to rely on this value — use process manager facilities to get
process name by PID instead.

wsFoundFileName

Defined for FIND_FILE/QUERY_DIRECTORY operation. Contains file name in native
format that is currently being found during enumeration process. For example, if
a directory is being enumerated, this field will consequently contain every file
name in that directory.

wsValKeyName

The name of a value for a given key name for registry operations.

wsNewName

New name of a registry key for rename operation. In native format.

childPid
Child process ID for an operations of Process Manager.

usMandatoryObjectNameSizelnBytes
Size of mandatory name of the object (wszFilename or wszRegKeyName).

12

STE Platform

usOptionalObjectNameSizelnBytes
Size of optional name of the object (wszFoundFileName).

IREPLY
This structure is used to reply events in the file system , registry or process
manager and is defined as follows:

class IReply

{
public:
virtual BOOL& Allow() = 0;
virtual BOOL& Redirect() = 0;
virtual ULONG& Flags() = 0;
virtual ULONG& ErrorCode() = 0;
virtual void SetFileName(const wchar_t* wszNewName, ULONG sizelnBytes) = 0;
virtual const wchar_t* GetFileName() const =0;
virtual const ULONG GetFileNameSize() const=0;

|3
Allow()
If set to TRUE, current operation will be allowed. This is default value for this field.

If set to FALSE, current operation will be denied. If an enumeration operation is
denied, found file will be hidden.

Redirect()
if set to TRUE, a file operation will be redirected to sandbox. bAllow member

must be set to TRUE in this case. The default value is FALSE.

wsFileName

Fully qualified file name in native format where the file operation is being
redirected. Defined for CREATE operation only.

SetFileName()
Sets new value for wsFileName, sizelnBytes should be set to size of wszFileName.

GetFileName()
Gets current value for wsFileName.

GetFileNameSize()
Gets size of filename.

13

STE Platform

IRule

File System service allows to set up rules that describe default behavior for an
operation if defined conditions are met. This is most usefull for defining sandbox
(described later), when a user can define sandbox location and conditions (for
example, process name to put into sandbox) when sand box is activated, rather
than reacting for every particular event to implemet a sandbox by itself. The rule
is defned by this structure (partially shown).

class IRule
{
public:
virtual DIWORD& RuleFlags() = 0;
virtual BOOL& PermanentRule() = 0;
virtual BOOL& InheritableRule() = 0;
virtual BOOL& RemoveOnProcessDeath() = 0;
virtual BOOL& Notify() = 0;
virtual DWVORD& Tag() = 0;
virtual DIWORD& Processld() = 0;
virtual GUID& PluginMark() = 0;
virtual GUID GetUniqueGuid() = 0;
virtual DIWORD& RuleAction() = 0;
virtual unsigned long& Component() = 0;
virtual unsigned long& operation() = 0;
virtual unsigned long& subOperation() = 0;
virtual void SetObjectName(int type, const wchar_t* wszObjectName, ULONG ulSize)=0;
virtual const ULONG GetObjectNameSize(int type) const =0 ;
virtual const wchar_t* const GetObjectName(int type) const =0 ;
virtual bool IsEqual(const IRule* r2) = 0;
virtual void Initialize(const IRule* r) = 0;
virtual ~IRule() {}

}

PermanentRule()

If set to TRUE, the rule becomes permanent, i.e is being swapped to disk and
therefore survives reboots and service unloadings. However, it is not
recommended to use permanent rules since they become active as soon as
service is loaded. And if some rule requires additional processings from your
plugin side, it cannot function properly if your plugin is not loaded for some
reason.

InheritableRule()
If set to TRUE, the rule is being automatically replicated and applied to child

processes, spawned by a process(es) that meets this rule conditions (i.e this rule is

applied to this process). Replicated rule (clone) is always non-permanent and is
14

STE Platform

scheduled for deletion as soon as child process terminates. If child process
happens to spawn another process, replication procedure will be repeated
recursively for that particular child.

RemoveOnProcessDeath()
If set to TRUE, the rule will be deleted as soon as process, described in the rule

terminates.

Notify()
If set to true, all plugins will be notified about events that matches this rule. This

is default value.

Tag()
An unique value that allows your plugin to recognize its rules. This value is not

preserved for permanent rules.

Processld()
Process ID that this rule is applied to. Set this field to 0 if this rule must be applied

to all processes in the system.

PluginMark()
An unique GUID which identifies rule as being managed by given plugin. Mark is

defined by plugin. Plugins must assign the same GUID for all rules they create.

GetUniqueGuid()
An unique GUID which identifies rule.

SetObjectName()
Sets object Name of given type of given size (ulSize).

Types are

CRULE_OBJ_MANDATORY - mandatory object name — a file name, or a registry
key or value name.

CRULE_OBJ_OPTIONAL - optional name. Used only in some requests, for
example, for FIND_FILE it contains found file inside a directory. If it is a
enumeration of %Dir%, which contains %file% , then mandatory name is %Dir%
and optional name is %file% for each found file, one at a time.

CRULE_OBJ_SANDBOXROOT - Sandbox is a place on a file system or inside the
registry, where operations are being redirected to. Set root folder or key for a

15

STE Platform

sandbox in this field. This field must be filled with name of a folder or key in
native format.

CRULE_OBJ _IMAGE - Process name (short, for example, FAR.EXE) to which this
rule must be applied. This field is an alternative to pid. Never use both pid and
this field. This may lead to an unpredictable results.

wszObjectName — object name in native format.

ulSize — size of wszObjectName in bytes.

GetObjectNameSize()
Gets object name size for object of given type.

GetObjectName()
Gets object name of given type.

RuleAction()
An action that must be performed for an operation that matches this rule. Can

take follwing values:
allow —an operation will be allowed.
deny —an operation will be denied.

emulate —an operation will be emulated, i.e. redirected to sandbox.

Component()

Gets/Sets Component which can be COM_FILE, COM_REGISTRY,
COM_PROCESS_NOTIFY for FS/Registry/Process events (see iComponent).

Operation()
An operation such as CREATE , ERASE, FIND_FILE (See Operation).

SubOperation()
See SubOperation.

IProcessData

This interface is primarly used by file system service Process Manager. It is very
unlikely that you will need this in your plugin. Flags are used internally, please do
not rely on them and do not modify them. Use this interface to get process ID
(Pid) and/or executable file name.

16

STE Platform

class IProcessData

{

public:
virtual const wchar_t* GetFullName() const =0;
virtual void SetFullName(const wchar_t* wszName) = 0;
virtual DWORD GetPid() = 0;
virtual DWORD GetParentPid() = 0;
virtual DWORD GetFlags() = ©;
virtual DWORD SetFlags(DWORD dwFlags) = 0;

}s

FSProxy

FSProxy is dynamic-linked library that provides convenient way to communicate
with kernel mode filtering driver. Win32 process may subscribe for notifications
about file system and registry events using this library. The reminder of this
section describes functions and interfaces exported by this library. Please note
that only one process may connect to this library at any given time. Therefore you
should use this library only if your version of FSSDK doesn’t contain file system
service — a special user mode Win32 service which allows third-party
functionality to be loaded as plugins. File System Service is also described in this
document later.

FSProxy exported functions

FSPROXY_API ISetup* Init()
This function returns interface for loading kernel mode driver and attaching to

the driver.

ISetup
ISetup interface is defined as follows:

class ISetup

{

public:
virtual int setSimplifiedCallbacks(ISimplifiedCallbacks* pCallbacks) =0;
virtual int DoFiltering(bool bStartFiltering, int iThreadsCount) = 0;
virtual bool FilteringStatus() = 0;
virtual ULONG ThreadsNumber() = 0;

17

STE Platform

setSimplifiedCallbacks()
This function attaches simplified version of above interface to the caller.

DoFiltering()

This function initiates filtering process. Set bStartFiltering to TRUE to start
filtering process , or false to stop. Second parameter specifies number of threads
used to process requests from the driver. Set this value to zero to let platform
define optimal value of threads.

FilteringStatus()
Returns filtering status. TRUE — if filtering is started, FALSE — otherwise.

ThreadsNumber()
Returns number of threads used by the filtering engine to intercept events from
file system and registry.

In order to use this interface, please follow the following scenario:

First, create a descendant class that implements ISimplifiedCallbacks interface
and create an instance of this class. Then call SetSimplifiedCallbacks.Call
DoFiltering() function in order to start filtering process.

18

STE Platform

ISimplifiedCallbacks
ISimplifiedCallbacks interface is defined as follows:

class ISimplifiedCallbacks

{
public:

virtual int GenericCallback(EVENT_NOTIFICATION* pNotification, IREPLY* pReply);
2

GenericCallback()

This function is called when any event in the system has happened and there is a
rule, that requires notification for user mode plugins.

19

STE Platform

File System Service

Overview

This section describes File System Windows Service that is shipped in some
versions of the Kit. The service is inteded to be used by your solution via plugins —
a dynamic loaded libraries, that implement specific C++ interfaces and receive
notifications from the service when one or another event occurs in the operating
system.

Commication Layer

The service is shipped together with communication layer — a dynamic linked
library that is aimed to provide interface for communications between plugins
and service itself and user mode component of your solution, that typically
implement GUI facilities and other user-mode logic. The remainder of the section
describes it’s structures and interfaces.

CData structure

Components, that use communication layer for communicating passes their
messages to each other through unified CData structure. This structure contains
the message itself and peer address (if it is a TCP IP connection) or a name in case
of named pipes. IP addresses are formed as “IP:port” string, where IP is an ip
address in form XX.XX.XX.XX and port —is decimal port number. Even such format
might also be used in case of named pipes, since it will be automatically
translated into suitable for pipe representation. Note also ,that in case of using
pipes — you must not provide full pipe name such as “\\.\\pipe\\Mypipe “, but

only “Mypipe” part. The structure is defined as follows:

struct CData
{
char szServer[40];
union
{
DWORD dwCommand;
DWORD dwErrorCode;
|3
union
{
CMultiConnectSession mc_sess;
CPluginData plugin_info;

20

file://///./pipe/Mypipe

STE Platform

unsigned char UserMessage[USER_MSG_SIZE];
wchar_t ComputerName[(USER_MSG_SIZE / sizeof(wchar_t)) / 2];

|5
union

{
DWORD dwPluginindex;

DWORD dwPluginCount;

szServer

Name of the server in form ip:port, for example “192.168.1.1:1088” or name of
named pipe in shortened form, for example “mypype”. If server name is given in
form of IP and is used in pipe session, it will be automatically converted to
suitable name transparently to the user. This field is meaningfull only in
WaitForConnection() and EstablishConnection() calls and is ignored by other
fuctions.

dwCommand

A command code that is recoginzed by your plugin.

dwErrorCode
An error code, recoginzed by your plugin. Used in answers from plugins.

CPluginData
Contains information about the plugin —it’s displayable name, unique GUID , flags

and the language which, if supported, displayable name should be written in.

CMultiConnectSession

Used only for multithreaded versions of session and contains maximum allowed
number of simultaneous connections , thread function pointer and an event
handle which should be set to signaled to abort all waiting threads for that
particular session.

UserMessage

Your messsage. Format is completely custom.

21

STE Platform

Exported Functions
The communication layers exports these functions:

COMLAYER_API ISession* CreateSession(DWORD type)
Creates a sessison of given type.

Type can have the following values:
TCP_IP_SESSION — creates a sockets based session.
PIPE_SESSION — creates a pipes based session.

TCP_IP_MULTITHEREADED_SESSION — creates a sockets based session which is
able to accept several simultaneous connections.

PIPE_MULTITHREADED - creates a pipes based session which is able to accept
several simultaneous connections.

COMLAYER_API VOID DeleteSession(ISession* session)
Deletes a sessison.

Exported Interface

ISession
ISession interface is defined as follows:

class ISession

{

public:

DWORD virtual WaitForConnection(const CData& data, bool bRestore) = 0;
DWORD virtual EstablishConnection(const CData& data, bool bRestore) = 0;
DWORD virtual RecvMessage(CData& data) = 0;

DWORD virtual SendMessage(CData& data) = 0;

DWORD virtual CloseConnection() = 0;

virtual ~ISession() {};

|3

WaitForConnection()
This function waits for incoming connection from client. Parameters are:
- A data, filled with address of waiting host and port or with a name of pipe.

An address of waiting host may be also set to 127.0.0.1 for convinience.

22

STE Platform

- Restore flag : if set to TRUE, connection will be automaically restored in
case of loss.

Returns ID of nhew connection.

EstablishConnection()
Establishes connection from a client side. The parameters are the same, as for

WaitForConnection, and server data must be filled up with a server real IP
address and port or name of a pipe.

Returns an ID of established connection.
RecvMessage()

Receives message from the host. Return ID of connection. The message is
received in data.

SendMessage()
Sends message to the host. Returns ID of connection.

CloseConnection()
Closes currently active connection. Returns ID of closed connection.

23

STE Platform

Plugins System

Overview

This sections describes plugins architecture — a dynamically loaded modules, that
are supposed to implement business logic of applications, based on the Filewall
service.

Registering plugins

Registering your plugin is relatively simple. This is done by editing config.xml file ,
located in Config subdirectory of installation directory.The format of the file is as
follows:

<INPROC_AGENT>filenamel.dll</INPROC_AGENT>

<INPROC_AGENT>filename2.dll</INPROC_AGENT>

<INPROC_AGENT>filenameN.dll</INPROC_AGENT>
Where filename(x).dll — is the name of plugin.

Plugins are located in the Plugins subfolder under Filewall folder.

Structures used by plugins

IPluginCallBacks
A plugin receives notifications from the service via IPluginCallback interface which
is defined as follows:

class IPluginCallbacks

{

public:
virtual bool __stdcall Initialize(IProcessManager* pProcessManager, IRuleManager*
pRuleManager, IFileSystemService* pFileSystemService) = 0;
virtual bool __stdcall onNotification(const EVENT_NOTIFICATION* pNotification,IReply*
pReply) = 0;
virtual void __stdcall Finalize() = 0;
virtual void __stdcall GetPlugininfo(GUID* pPlugin_id, DWORD* pdwFlags, wchar_t*
szPrintableName, DWORD dwLangld) = 0;

2

24

STE Platform

Initialize()
This function is called when plugin is being loaded.
The function should return true in case of successful initialization or false

otherwise.

onNotification()
This function is called when there is an event on the file system or registry has

occurred and there is a rule, marked by Notify() flag exists for this event.

Finalize()
This function is called when plugin is being unloaded.

GetPlugininfo()
This function may be called by plugin’s client to obtatin data about the plugin. An

unigue plugin_id shiuld be returned, flags , printable name and language id. Flags
can have the following values:

PLUGIN_WATCHER = 0;
PLUGIN_IMPLEMENTS_SANDBOX_REGISTRY =1;
PLUGIN_IMPLEMENTS_SANDBOX_FILESYSTEM = 2;
PLUGIN_DENIES_REGISTRY = 4;
PLUGIN_DENIES_FILESYSTEM = 8§;

IProcessManager
This interface is used to manage processes by plugins.

class IProcessManager

{
public:
int virtual __stdcall GetProcessCount() = 0;
TProcessData virtual __stdcall GetProcessData(int index) = 0;
void virtual __stdcall AddProcess(const TProcessData& data)= 0;
void virtual __stdcall RemoveProcess(int index)=0;
TProcessData virtual __stdcall GetProcessByPid(DWORD pid, DWORD parentPid = 0) = 0;

GetProcessCount()

This function returns number of processes currently active.

GetProcessData()
This function returns information about process.

25

STE Platform

TProcessData

This structure is defined as follows:

struct TProcessData
{
private:
WCHAR* wszFullName;
public:
TProcessData();
~TProcessData();
TProcessData(const wchar_t* FullName,DWORD pid , DWORD parentPid, DWORD
dwrFlags);
TProcessData(const TProcessData& r);
const wchar_t* GetFullName() const;
void SetFullName(const wchar_t* wszName);
TProcessData& operator=(const TProcessData& r);
bool operator==(const TProcessData& r);
bool operator!=(const TProcessData& r);
DWORD pid;
DWORD parentPid;
DWORD dwFlags;
|3

GetProcessByPid()
Returns process data by process ID. Never specify parentPid.

AddProcess()
Reserved for use by platform developers.

RemoveProcess()
Reserved for use by platform developers.

IRuleManager
This interface is used to manage rules by plugins.

class IRuleManager

{

public:
virtual IRule* CreateRule() = 0;
virtual void DeleteRuleObject(IRule* r) = 0;
virtual bool __stdcall LoadRules(const char* pRuleText = NULL) = 0;
virtual bool __ stdcall SerializeRules() = 0;
virtual size_t __ stdcall GetRuleSnapShot(void** ppSnapshot) = 0;
virtual IRule* __stdcall GetRule(void* hSnapShot, int index) = 0;
virtual void __stdcall FreeSnapshot(void* pSnapshot) =0;

26

STE Platform

virtual BOOL __stdcall AddRule(const IRule* rule) = 0;

virtual bool __stdcall DeleteRule(const IRule* rule) = 0;

virtual bool __stdcall FindRuleByTag(DWORD dwTag, DWORD count, IRule* rule) = 0;
virtual bool __stdcall FindRuleByGUID(GUID guid, IRule* rule) = 0;

virtual bool __stdcall FindEmulationRuleByPid(DWORD pid) = 0;

virtual bool __stdcall FindEmulationRuleByName(wchar_t* wszName) = 0;

virtual DIWVORD __stdcall TagRule(IRule* r) = 0;

virtual VOID __stdcall DropRules() =0 ;

virtual bool CommitDelayedRulesForProcess(const wchar_t* wszProcessName, DWORD
pid) = 0;

virtual bool __stdcall CleanupMinirulesForPid(const HANDLE hPid) =0;

virtual bool __stdcall RegisterNotifications(IRuleManagerCallbacks*
notifications_receiver) = 0;

virtual bool __stdcall UnRegisterNotifications(IRuleManagerCallbacks*
notifications_receiver) = 0;

virtual GUID* __stdcall GetRulesForPid(DWORD pid, size_t& count) = 0;

virtual void __stdcall DeleteReturnedGuids(GUID* p) = 0;

LoadRules()
Loads rules. Pass NULL as a parameter.

SerializeRules()
Serializes rules to disk.

GetRuleSnapshot()
Returns rule count and sets ppSnapshot to a value of type void*. Use this value to
work with current rules state (snapshot).

GetRule()
Returns rule of given index for given snapshot.

FreeSnapshot()
Frees memory, occupied by given snapshot.

RegisterNotification()
Registers notification receiver. It will be called each time given rule is applied.

UnRegisterNotification()
Unregisters notification receiver.

AddRule()
Adds new rule, specified as parameter.

DeleteRule()
Removes rule, specified as parameter.

27

STE Platform

OnActivation()

Called each time when rule with given unique guid (first parameter) is applied to
process with given pid. Return value is currently ignored. The rules are applied
each time given process starts up.

OnDeactivation()
Same as previous function, but this one is called on rule deactivation — when

given process is being terminated.

IFileSystemService
This interface is used to call directly to the service from within plugins.

class IFileSysteminterface

{
public:
virtual bool __stdcall CallService(const CData& calldata, CData& reply) = 0;
virtual HMODULE __ stdcall GetPluginByGUID(const GUID* pGuid) = 0;
virtual void __stdcall UnloadPlugin(HMODULE h) = 0;
virtual bool IsBESTProcess(HANDLE pid) = O;
virtual GUID RegisterAPlInterceptor(lAPlIinterceptor® pApilnterceptor) = 0;
virtual void UnregisterAPlInterceptor(const GUID guid) = 0;
virtual bool __stdcall CallService(const CData& calldata, CData& reply) = 0;
}
CallService()

Sends specific command to the service and receives a reply. Reserved for use by
service developers.
Currently this interface is reserved for use by service developers. Third-party

plugins should not use this method.

GetPluginByGUID()
Returns handle of loaded plugin module, specified by it’s guid. This method is

intended for use by plugins which rely on other installed plugins and their
interfaces. By obtaining handle of a required plugin, dependant one may call to it
via it’s exported functions.

UnloadPlugin()
Unloads specified plugin (by handle).

28

STE Platform

IsBESTProcess()
Determines if a given process is a part of platform. (is Belongs to the Engine of

Security Toolkit) Returns true if given process belongs to platform or false —
otherwise.

RegisterAPIInterceptor()
Registers it’s caller as an APl interceptor and returns given GUID. This guid should
be used when caller unregisters itself later on.

UnregisterAPIInterceptor()
Unregisters previously registered interceptor.

IApilntercepor
This interface is used by plugins that want to intercept APIs called by particular

processes or otherwise modify behavior of them.

class IAPlInterceptor

{
public:

virtual bool __stdcall ProcessStartup(const wchar_t* wszModuleName, DWORD pid,
wchar_t* wszlnjectedDLL) = O;

|5

ProcessStartup()

This method is called by platform each time new process is loaded. First
parameter gets module name which is being loaded. This is usually an EXE module
of process which is starting up as a first parameter, process id of process which is
starting up as a second parameter and a module name (DLL) which should be
loaded into process. The module should be located in System32 or
WOW64System32 system folder and must its name must end on ‘32" or ‘64’ for
32 and 64 bit versions of module respectively. For instance names could be
‘mymodule32.dIl’ for 32 bit module and ‘mymodule64.dll’ for 64 bit module. You
may specify either 32 or 64 bit version of module, such as
‘mymodule32.dll’.Correct version of moduel to load will be determined
automatically based on bitness of process to load module into. You may specify
several modules to load separated with semicolon. Such as
‘moduleA32.dll;moduleb32.dll;modulec64.dll’.

This method should return true in case of success (so that given injectee module
will be loaded) or false otherwise.

29

STE Platform

Plugin exported entry point

Each plugin must declare exported function named RegisterAgent or
_RegisterAgent@4 but not both which prototype is as follows:

typedef int (__stdcall *CRegisterAgent)(void** pSimplifiedCallbacks);

This function must return non-zero value to indicate success. pSimplifiedCallbacks
parameter is a pointer to pointer to IPluginCallbacks. Given pointer to must be
assigned with valid instance of class that implements IPluginCallbacks interface
within plugin.

SHADE Plugin API Overview

For those developers who need just high level programmatic control of
Sandboxing functionality, SHADE plugin (SHADE.DLL) provides an API for this. First
thing you should do is to call from your plugin GetPluginByGUID() method ofl
IFileSystemService:

virtual HMODULE _ stdcall GetPluginByGUID(const GUID*
pGuid);

Provide the following GUID as a parameter:

static const GUID sandbox_guid =

{ oxb75dcd72, ©x75aa, 0x4173, { Ox9b, Oxe7, oxd4, oxf, Ox72,
Ox2a, oOxc8, ox2d } };

After you get the HMODULE, a handle to the DLL, you can
control creation of sandboxes via provided exported
functions and interfaces. The rest of this chapter describes
those functions and interfaces. We will start from
description of interfaces and after that, we will describe
exported function which return those interfaces. Interfaces
are a pure C++ interfaces.

IVirtualMachine
A sandbox is represented by IVirtualMachine interface which is declared as
follows:

class IVirtualMachine
{
public:
virtual bool Initialize(void) = 0;
30

STE Platform

virtual

DWORD AddExecutable(const wchar_t* wszFileName,

const wchar_t* args, DWORD dwFlags) = 0;

virtual
virtual

DWORD AddPid(DWORD pid, DWORD dwFlags) = ©;
DWORD RemoveExecutable(const wchar_ t*

wszFileName) = 0;

=0;

}s

virtual

virtual
virtual
virtual
virtual
virtual
virtual

virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

bool IsFileSandboxed(const wchar t* wszFileName)
bool IsProcessSandboxed(DWORD pid) = ©;

GUID GetGUID() = ©;

BOOL GetCleanFlag()= 0;

BOOL SetCleanFlag(BOOL) = O;

bool Serialize() = ©0;

DWORD GetSandboxedFilesList(wchar_ t** pList) =

void FreelList(wchar_t* pList) = 0;

bool Load() = ©;

const wchar_t* GetFSRoot() = 0;

void AssignView(IViewCallbacks* view) = 0;
bool IsCleaningUp() = 0;

bool SetName(const wchar_t* wszName) = 0;
const wchar_t* GetName() = 0;

bool PrepareForDeletion() = 0;

ULONG AddRef() = ©;

ULONG Release() = 0;

IVirtualMachine methods

Initialize
Call this method after your created new virtual machine. It performs necessary

initialization for virtual machine. Only after this initialization is done, the virtual

machine is ready to use.

AddExecutable

This method adds executable file to the virtual machine (sandbox). When any file

with the name provided is executed , the process is automatically placed into

sandbox. Provide full path to filename in wszFileName parameter. Pass zeroes as

all other parameters — they are reserved for internal SHADE use. Return values

are defined as follows:

31

STE Platform

#define SANDBOX_OK @

#define SANDBOX_DEMO_LIMITIAION 1
#define SANDBOX_WRONG_FILE 2
#define SANDBOX_ ALREADY EXISTS 3
#define SANDBOX_ ERROR 255

AddPid

This method adds a process with given pid to sandbox. The process must be a
just-started process and put into suspended state. Use Windows API
CreateProcess() to create a process in suspended state and use returned pid as a
parameter to this function. In case of success, “unfreeze” the process and it will
run sandboxed. The dwFlags parameter must be zero. Return value is TRUE in
case of success.

RemoveExecutable
This method removes given process by filename from sandbox. Return values are
same as for AddExecutable() method.

IsFileSandboxed
This method returns if a process with given filename will run sandboxed.

IsProcessSandboxed
Checks if given process (by pid) is sandboxed or not.

GetGUID
Returns GUID of this virtual machine (sandbox).

GetCleanFlag
Returns if given virtual machine is scheduled for cleaning

SetCleanFlag
Pass TRUE to schedule virtual machine cleanup. SHADE will try to clean up
sandbox immediately or after reboot if not possible.

Serialize
This method flushes to disk and registry sandbox state (settings)

GetSandboxedFilesList

32

STE Platform

Pass a pointer to wchar_t* to get an array of null-
terminated strings - filenames of sandboxed processes.

FreeList
Frees memory occupied by sandboxed file list, created by GetSandboxedFilesList()
method.

Load
Loads sandbox settings from disk.

GetFSRoot
Returns root to sandboxed files on the disk, looks like C:\Shade\{ ... } , where {..} is
sandbox GUID

AssignView

This method allows you to receive notifications for certain events, like adding a
file to sandbox, or removing it. You can build your GUI, responsive for given
events and displaying the state of sandbox accordingly.

IsCleaningUp
Retruns true if sandbox is being cleaned up.

SetName
This method assigns a name to sandbox to be displayed by GUI. Retruns true in
case of success.

GetName
Returns sandbox name.

PrepareForDeletion
When you want to completely delete sandbox, call this function before doing this.
It will try to cleanup the sandbox. Returns true in case of success.

AddRef
Increases reference count to this sandbox.

Release
Decreases reference count to this sandbox.

33

STE Platform

IVMManager
This interface controls creating and managing virtual machines.

class IVMManager

{
public:
virtual GUID CreateVM(GUID guid) = 0;
virtual void DeleteVM(GUID vmGuid) = 0;
virtual IVirtualMachine* GetVM(GUID vmGUID) =0;
virtual GUID* GetVMS() = 0;
virtual void DropGUIDS(GUID* pArray) =0;
virtual size t VMCount() = 0;
virtual bool SelectVM(GUID guid) = ©;
virtual GUID GetSelected() = 0;
virtual void ProcessOrphanagedFiles() = 0;
virtual IVirtualMachine* GetVMByName(const wchar t*
wszName) = O;
virtual bool IsUniqueName(const wchar_t* wszName) = 0;

}s

IVirtualMachine methods

CreateVM
Creates new virtual machine. Pass GUID_NULL to automatically generate GUID for
new virtual machine. Returns GUID of newly created machine.

DeleteVM
Deletes VM with given GUID.

GetVM

Returns pointer to IVirtualMachine interface for VM with given GUID. This
function increases reference count to IVirtualMachine pointed object. Use
Release() method when you no longer need this machine to prevent memory
leak.

GetVMS
Returns ponter to array of GUIDS of existing virtual machines. The array is
terminated with GUID_NULL element.

34

STE Platform

VMCount
Returns number of virtual machines.

SelectVM

Selects given VM (by guid). This means that selected VM is now default. If user
uses SHADE GUI, this machine is displayed when they open GUI. Returns true in
case of success.

GetSelectedVM
Returns GUID of currently selected VM or GUID_NULL if none is selected.

ProcessOrphanagedFiles

For internal use. When sandbox is being cleaned up, at first, the whole folder is
renamed and deleted later, the deletion could happen even after reboot. This
function forces deletion of orphanaged sandboxes.

GetVMByName
Returns virtual machine by name.

IsUniqueName
Checks if given name is unique. If true, it is safe to create a VM with given name —
no duplicates are guaranteed.

IViewCallbacks
You can create a class that implements this interface to receive notifications
which are usefull for a custom-made UlI.

class IViewCallbacks

{
public:

virtual bool SBUIAddFileToUI(const wchar_ t*
wszFileName, const wchar_t* cmd_args, DWORD tag, int nWindow
)=0;

virtual bool SBUI_RemoveFileFromUI(const wchar_ t*
wszFileName, int nWindow, DWORD pid /*= ©0*/)=0;

virtual void ClearView() = 0;

}s

35

STE Platform

IViewCallabacks methods

SBUIAddFileToUI

Called when a user adds new application to sandbox. wszFileName contains name
of file. Other parameters are reserved for internal use and are not documented
here. Return true.

SBUI_RemoveFileFromUI
Called when a user removes a file given in wszFileName parameter from Ul.
Other parameters are reserved. Return true.

ClearView
Called when the plugin requires to clean the view of Ul. SHADE Ul removes all
icons from the view.

Exported fuctions
SHADE.DLL provides several exported functions to work with interfaces described
above.

STDAPI_(IVMManager*) GetVMManager()
This function returns pointer to Virtual Machine Manager.

STDAPI (int) LicenseActivate(const char* serial)
Activates SHADE plugin with given activation key, returns 0 in case of failure and

a value > 0 in case of success.

STDAPI (int) LicenseIsTrial()
Checks if given license is trial. Returns O if license is NOT trial. Returns -1 in case of

failure.

STDAPI (int) LicenseIsActivated()
Returns -1 in case of failure, 0 —if not activated, a value > 0 if activated.

STDAPI_ (int) LicenseGetRunningMode()
Returns running mode (0 = home, 1 = corporate), -1 in case of error.

36

